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We consider the behavior of small, growing perturbations in a laminar boundary layer on an elastic
surface.

On the basis of the analysis we assume the usual Orr—Sommerfeld equation with boundary conditions
for the surface, investigating under the action of a perturbing pressure p only small normal deformations

¥6 = kp exp (i6) [1]:
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Here 7 = f(y) is the dimensionless amplitude of the stream function of the perturbing motion, y is the
dimensionless transverse coordinate (y = 1 on the outer boundary of the boundary layer of thickness §,and
v =0 on a streamlined surface in the equilibrium configuration), o is the wave number, u = u(y) is the ratio
of the longitudinal component of the velocity of the principal motion in the boundary layer to the velocity U
on its outer boundary, ¢ = ¢y +ici is a complex quantity containing the ratio of the phase velocity of propaga-~
tion of the perturbation wave cg to U (cy = ¢B/U =Br5/aU) and the dimensionless coefficient of growth of
perturbations with time (ci =3i6/aU), Br is the circular frequency of the perturbation wave, Bi is the coef-
ficient of growth of perturbations with time, R = Ué/v is the local Reynolds number, v is the kinematic coef-
ficient of viscosity of the liquid, k is the compliance coefficient of the surface, 9 is the angle of phase shift
between the deformation of the surface and the perturbing pressure.

If we use the usual form for the particular solutions of the Orr—Sommerfeld equation [2], then from
the boundary conditions (1) we can obtain an approximate characteristic equation, in which terms of order
(eR)™! and higher are dropped:
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where the index k corresponds to the critical layer (y = yi for u=cy) and the index 0 corresponds to the co-
ordinate y = 0. ;

Equation (2) outwardly does not differ from the equation for neutral oscillations [1], but the quantities
that appear in it must be calculated taking account of ¢i = 0. The quantity z, which depends on the velocity
profile of the principal flow, is not related to the characteristics of the streamlined surface and has the same
form as for the case of a solid wall [3]:
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/ The left side of Eq. (2) is a universal function, which is similar
Lnf /';Lzz':‘f'/ﬂ-" — k=0 k=01 to the Tietjens function for neutral oscillations, and has been complete-
! 5 ly tabulated for fixed values of the parameter ci/ykuk' using Hankel
EeYoz5 157~ / i
vz gn / functions of the first kind of order Y3:
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P 7 // }/ Equation (2) was solved graphically (using the construction of
U 77 P ¢+ bolar diagrams of its left and right sides) for a Blasius profile for a
Fig. 3 number of values of ¢i/yiuk' with zero phase shift =0 and four coef-

ficients of compliance k=0, 0.1, 0.4, 1.0. Calculation results are shown
in Fig. 1 in the {(o*, R*) plane; an asterisk with a symbol corresponds to characteristics determined based
on the thickness of the displacement 6*., With an increase in the ratio ci/ykux' the area bounded by the
curves decreases. The instant of degeneracy of the curve into a point corresponds to the physical impos-
sibility of the further existence of plane perturbations of the type under consideration:

¥ =Ubfexp{ilaX — @B, +B)T]} (6)
where ¥ is a dimensional stream function of the perturbing motion, a = @ /8 is the frequency of the pertur-
bation-wave shape, X = x6 is the longitudinal dimensional coordinate (x is the dimensionless coordinate),

T =18/U is the time, t is the dimensionless time and in agreement with the hypothesis of Michel [4] istaken
as the beginning of the region of laminar —turbulent transition. The corresponding Reynolds number can

be called critical (R, or R¥), and the minimum Reynolds number on the curve of neutral stability (c; =0)

is the Reynolds number of the loss of stability (R; or Rf). . The dependence of R} and R¥ on the compliance
coefficient k is given in Fig. 2.

There is also a definite interest in the question of the effect of the elasticity of the surface on the
growth of velocity pulsations. The longitudinal velocity component of the perturbed motion is found in terms
of the stream function (6):

1 v .
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(A = Ao exp (B;T)) 0

where A is the amplitude of the pulsation velocity at the point with coordinate X and corresponding Reynolds
number Ry =UX/v, Ay= Uf'is the amplitude of the pulsation velocity at the point of the loss of stability
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Bi = ci= 0 for oscillation of the given dimensionless frequency. This point corresponds to the coordinate
X, and Reynolds number Rgy and R§.

Taking into account that the perturbation wave propagates [5] with group velocity cB+ adcp/8 o, we
can obtain from (7)
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In the case of a laminar boundary layer on a plane plate we have
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In Fig. 3 we carry out a comparison of the growth in amplitudes on elastic and rigid surfaces for the
dimensionless frequencies Byv/U? =5 +10~% and 7.5-107%,

A theoretical investigation and calculation results enabled us to establish that with an increase in the
value of the compliance coefficient of a streamlined surface there is an increase in the Reynolds number of
the loss of stability, the critical Reynolds number, and the length of the pre-transition region (zones located
between the points corresponding to Ry and Ry); there is a decrease in the range of dangerous dimensionless
frequencies of the perturbed motion corresponding to the instability zone and also in the dimensionless fre-
quency and the coefficient of growth of the maximum growing perturbations: there is a retardation in the
growth of the amplitudes of the pulsation velocities.
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